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Abstract 

We propose a computational model for detecting and localizing instances 

from an object class in static grey level images. We divide detection into vi- 

sual selection and final classification, concentrating on the former: Drastically 

reducing the number of candidate regions which require further, usually more 

intensive, processing, but with a minimum of computation and missed detec- 

tions. Bottom-up processing is based on local groupings of edge fragments 

constrained by loose geometrical relationships. They have no a priori semantic 

or geometric interpretation. The role of training is to select special groupings 

which are moderately likely at certain places on the object but rare in the 

background. We show that the statistics in both populations are stable. The 

candidate regions are those which contain global arrangements of several local 

groupings. Whereas our model was not conceived to explain brain functions, it 

does cohere with evidence about the functions of neurons in VI and V2, such 

as responses to coarse or incomplete patterns (e.g., "illusory contours") and to 

scale and translation invariance in IT. Finally, the algorithm is applied to face 

and symbol detection. 

1    Introduction 

Approximately 150 milliseconds after visual input is presented, or within several tens 

of milliseconds after local processing in VI, cells in IT signal that an object has been 

detected and a location has been selected in a field of view larger than the fovea. 

Assuming a specific detection task is required, the decision is rapid but might be 

wrong. Additional processing might reveal that the desired object is not in the vicinity 

of the first location and a sequence of locations may need to be inspected. Therefore, 

in a very short period of time, local information is processed in a region somewhat 

larger than the fovea in order to identify "hot spots" which are likely, though not 

certain, to contain a desired object or class of objects. Final determination of whether 



these candidate locations correspond to objects of interest requires intensive high 

resolution processing after foveation. This scenario - visual selection (or selective 

attention) and sequential processing - is widely accepted in the literature; see Thorpe, 

Fize k Marlot (1996), Desimone, Miller, Chelazzi k Lueschow (1995), Lueschow, 

Miller k Desimone (1994), Van Essen k Deyoe (1995), Ullman (1996). 

In artificial vision, the problem of detecting and localizing all instances from a 

generic object class, such as faces or cars, is referred to as object detection. Our goal 

is an efficient algorithm for object detection in static grey level scenes, emphasizing 

the role of visual selection. By this we mean quickly identifying a relatively small set 

of poses (position, scale, etc.) which account for nearly all instances of the object 

class in a grey level image. Experiments are presented illustrating visual selection 

in complex scenes, as well as the final classification of each candidate as "object" 

or "background." We also explore connections between our computational model 

and evidence for neuronal responses to "illusory" contours or otherwise incomplete 

image structures in which fragmentary data is sufficient for activation. We argue that 

it is more efficient and robust to exploit spatial regularity by not filling in missing 

fragments. 

Here is a synopsis of the approach: Bottom-up processing is based on local features 

defined as flexible groupings of nearby edge fragments. The object class is represented 

by a union of global spatial arrangements, this time among several of the local fea- 

tures and at the scale of the objects. Photometric (i.e., grayscale) invariance is built 

into the definition of an edge fragment. Geometric invariance results from explicit 

disjunction (ORing): The local groupings are disjunctions of conjunctions of nearby 

edge fragments and the global arrangements are disjunctions of conjunctions of the 

local ones. In principle we entertain all possible local features, a virtually infinite 

family. The role of training is to select dedicated local groupings which are each rare 

in the "background population" but moderately likely to appear in certain places on 

the object. We will provide evidence that a very small amount of training data may 



suffice to identify such groupings. 

Visual selection is based on an image-wide search for each global arrangement in 

the union over a range of scales and other deformations of a reference arrangement. 

Each instance signals a candidate pose. Accurate visual selection is then feasible due 

to the favorable marginal statistics and to weak dependence among spatially distant 

groupings. It is fast because the search is coarse-to-fine and the indexing in pose 

space is driven by rare events, namely the global arrangements; in addition, there 

is no search for "parts" (or other sub-classification task) and no segmentation per 

se. The result of an experiment in face detection is shown in Figure 1. The lefthand 

panel shows the regions containing final detections. The righthand panel is a grayscale 

rendering of the logarithm of the number of times each pixel in the image is accessed 

for some form of calculation during visual selection; the corresponding image for many 

other approaches, e.g., those based on artificial neural networks, would be constant. 

Part of this program is familiar. The emphasis on groupings and spatial rela- 

tionships, the use of edges to achieve illumination invariance, the general manner 

of indexing and the utility of statistical modeling have all been explored in object 

recognition; some points of contact will be mentioned shortly. Moreover, the general 

strategy for visual selection goes back at least to Lowe (1985) and others who em- 

phasized the role of selecting groupings based on their statistical or "non-accidental" 

properties. 

What seems to be new is that our approach is purely algorithmic and statistical. 

The groupings have no a priori semantical or geometrical content. They are chosen 

within a very large family based solely on their statistical properties in the object and 

background populations. They are also more primitive and less individually infor- 

mative than the model-based features generally found in computer vision algorithms. 

For example, we use the term "edge fragment" even though the marked transitions 

have no precise orientation. Moreover, the groupings do not necessarily correspond to 

smooth object contours and other regular structures (such as corners and lines) that 



are often the target of bottom-up processing. In other words, there is no geometrical 

or topological analysis of contours and object boundaries. (See Figure 3.) Nor is 

there an abstract concept of a "good grouping" as in Gestalt psychology. 

In addition, we argue that visual selection, if not final classification, can be ac- 

complished with object representations which are very coarse and sparse compared 

with most others, for example 3D geometric models, structural descriptions based on 

"parts" (Winston (1970), Biederman (1985)) and "pictorial representations" (Ullman 

(1996)). The "face graphs" in Maurer & von der Malsburg (1996) are closer in spirit, 

although the "jets" (outputs from multiple Gabor filters) at the graph vertices are 

more discriminating than our local groupings; also, the representation there is much 

denser, perhaps because the application, namely face recognition, is more challenging. 

Our representation of pose space (a three point "basis" or local coordinate system) 

is the same as in geometric hashing (Lamdan, Schwartz & Wolfson (1988)), wherein 

the local features are affine invariants (e.g., sharp inflections and concavities) and 

objects are represented by hash tables indexed by feature locations. But again our 

framework is inherently nondeterministic: Features may or may not be visible on the 

objects, regardless of occlusion or other degrading factors, and are characterized by 

probability distributions. In addition, the global arrangements are more than a list; it 

is the geometrical constraints which render them "rare" in the background population. 

The statistical framework in Rojer & Schwartz (1992) is similar, although there is no 

systematic exploration of features. Also pose indexing based on global information 

is more efficient than the Hough transform. Finally, there are shared properties with 

artificial neural networks (Rowley, Baluja h Takeo (1998), Sung & Poggio (1998)), for 

example the emphasis on learning and the absence of formal models. However, our 

algorithm is not purely "bottom-up" and our treatment of invariance is explicit; we do 

no expect the system to "learn" about it, or about weak dependence or coarse-to-fine 

processing. These properties are "hard-wired." 

In the following section the object detection and visual selection problems are 



Figure 1: Left: Regions containing final detections. Right: A grayscale rendering of the 

logarithm of the number of times each pixel in the image is accessed for some form of 

calculation during visual selection. 

formulated more carefully. In Section 3 we delineate the statistical and invariance 

properties we require of our local and global features. The edge groupings are de- 

fined in Section 4, together with an analysis of their "statistics" in natural images. 

Training and object representations are discussed in Section 5, as well as error rates 

and parameter selection. In Section 6 we briefly comment on how final classification 

is performed and present some experiments on face and symbol detection. Section 7 

is devoted to connections with brain modeling, especially evidence for similar types 

of coarse processing in the visual cortex, and to neural network-type architectures 

for efficient parallel implementation of the proposed algorithm. We conclude with a 

summary of the main strengths and weaknesses of the proposed model. 

2    Problem Formulation 

The problem is to detect objects of a specific class, e.g., faces, cars, a handwritten "5", 

any digit, etc. In order to narrow the scope we assume static gray level images, and 

hence do not utilize color, depth or motion cues. However, since our initial processing 
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is edge-based, one way to incorporate such information would be to replace intensity 

edges by those resulting from discontinuities in color, depth or motion. Moreover, we 

do not use context. Thus, the detection is primarily shape-based. 

We assume that the object appears at a limited range of scales, say ±25% of 

some mean scale, and at a limited range of rotations about a reference orientation 

(e.g., an upright face). Other poses are accommodated by applying the algorithm to 

pre-processed data; for example we detect faces are scales larger than the reference 

one by simple downsampling. 

We want to be more precise about the manner in which a detected object is 

localized within the image. Since the given range of scales is still rather wide and 

since we also desire invariance to other transformations, for instance local linear and 

nonlinear image deformations, it is hardly meaningful to identify the pose of an object 

with a single degree of freedom. Instead we assign each detection a basis - three points 

(six degrees of freedom) which define a local coordinate system. Consequently, in 

addition to translation, there is an adjustment for scale and other small deformations. 

Of course this extended notion of localization increases the number of poses by several 

orders of magnitude; within the class of transformations mentioned above, the number 

of bases in a 100 x 100 image is on the order of ten million. 

Assume that each image in a training set of examples of the object is registered 

to a fixed reference grid in such a way that three distinguished points on the object 

are always at the same fixed coordinates, denoted zi,Z2,zz. As an example of three 

distinguished points on a face, consider the "centers" of the two eyes and the mouth. 

Typically we use a reference grid of about 30 x 30 pixels and expect the smallest 

detection to be at a scale of around 25 x 25. Each possible image basis (&i, 62,^3) 

then determines a unique affine map which carries Z{ to b{ for i = 1,2,3. In addition, 

the reference grid itself is carried to a subimage, or "region-of-interest" (ROI), around 

the basis. 

The ROI plays the role of a segmented region. In particular, there is no effort to 



determine a silhouette or a subregion consisting more or less exactly of object pixels. 

Note also that we do not search directly for the distinguished points; they merely 

define localization. We find that a search for either a silhouette or for special points 

during a chain of processing leading up to recognition is highly unreliable; in fact, it 

may only be when the object as a whole is detected that such things can actually be 

identified. 

Visual selection means identifying a set of candidate ROIs; the ultimate problem 

is to classify each one as "object" or "background," which may not be easy with 

high accuracy. However, given the drastic reduction of candidates, presumably the 

final classification of each candidate could be allotted considerable computational 

resources. Moreover, this final classification can be greatly facilitated by registering 

the image data in the ROI to the reference grid using the affine map mentioned above. 

For example, in our previous work, the final classification was based on training 

decision trees using registered and normalized gray level values, and the computer 

vision literature is replete with other methods, such as those based on neural networks. 

However, this is not the main focus of this paper. The theme here is the reduction 

of the number of ROI's which require further and intensive processing from several 

millions to several tens or hundreds, and with a minimum of computation and missed 

detections. 

3    Feature Attributes 

Our local features are binary, point-based image functionals which are defined modulo 

translation. Moreover, the set of all occurrences on an image-wide basis is regarded 

as the realization of a point process, assumed to be stationary in the background 

population in a statistical sense. Instances of this process have no a priori semantic 

interpretation and hence there is no sub-recognition problem implicit in their com- 

putation.  In particular there is no such thing as a "missed detection" at the feature 



level. Their utility for visual selection depends on the following attributes: 

• LI: Stability: A significant degree of invariance to geometric deformations and 

to gray level transformations representing changes in illumination. 

• LII: Localization:  Appearance in a specified small region on a significant 

fraction (e.g., one-half) of the registered training images of the object. 

• LIII: Low Background Density:  Realizations of the point process should 

be relatively sparse in generic background images. 

The first two properties are linked. Suppose, for example, that all images of the 

object corresponded to smooth deformations of a template. Then stability would 

imply that a local feature which was well-localized on the template should be present 

near that characteristic location on a sizeable fraction of the examples. In the next 

section we will exhibit an enormous family of local features with properties LI and 

LIII and explain how to select a small subset of these based on training data which 

also satisfy LII. 

Global information is essential. Complex objects are difficult to detect (and dis- 

tinguish from one another) even when coherent "parts" are individually recognized, 

and doing this independently of the whole object is itself extremely problematic. For 

example, although faces can be detected at low resolution, it might be very difficult 

to identify say a left eye based only on the intensity data in its immediate vicinity, 

i.e., outside the context of the entire face; see the example and discussion in Ullman 

(1996). Furthermore, local features do not provide information about the pose, except 

for translation. 

A global arrangement in a registered training image is the conjunction, i.e., simul- 

taneous occurrence, of a small number of local features subject to the constraint that 

their locations in the reference grid are confined to specified regions. An instance of 

a global arrangement in a test image occurs in the ROI of a basis if the locations 

of the local features fall in their distinguished regions in the local coordinate system 
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determined by the basis. This will be made more precise later on. The properties we 

need are these: 

• GI: Coverage: A small collection (union) of such arrangements "covers" the 

object class in the range of scales and rotations in which the object is expected 

to appear in the scene. 

• Gil: Rare Events: The arrangements are very rare events in a generic scene, 

i.e., in general background images. 

The precise meaning of GI is that a very high percentage of images of the object 

exhibit at least one global arrangement after registration to the reference grid. In 

other words, the union of the arrangements is nearly an invariant for the object class. 

During selection, the object instances which are detected are those which are "cov- 

ered" by at least one global arrangement. Hence this "coverage probability" is lower 

bound on the false negative rate of the entire detection process. The coverage proba- 

bility is directly determined by the joint statistics of the local features on registered 

images of the object class, together with the degree of invariance introduced in the 

definition of the arrangements, i.e., the amount of "slack" in the relative coordinates 

of the local features; see Section 5. 

Property Gil - limiting the number of "hot spots" - is of course related to false 

positive error, as will be explained more fully in Section 5.2. Statistical characteristics 

of the global arrangements in "natural scenes" are determined by the density and 

higher order moments of the point processes corresponding to the local features. 

4    Local Groupings and Their Statistics 

All the features described here are constructed from intensity transitions. A great 

many edge detectors have been proposed and some of these with enough greyscale 

invariance would suffice for our purposes. The one we use is based on comparisons of 
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Figure 2: Two examples of edge arrangements with Nedges = 2 edges in addition to the 

center one, each allowed to lie anywhere in a subregion of size Npixeis fa 10. 

intensity differences and is consequently invariant to linear transformations of the grey 

scale, insuring the photometric part of LI. There are four edge types, corresponding 

roughly to vertical and horizontal orientation and two polarities; the details are in 

Amit, Geman &: Jedynak (1998) and are not important for the discussion here, except 

to note that the orientation is not very precise. For example, the "vertical" edge 

responds to any linear boundary over a ninety degree range of orientations. 

4.1    Edge Groupings 

The local features are flexible spatial arrangements of several edge fragments, orga- 

nized as disjunctions of local conjunctions of edges. Each feature has a "central edge" 

of some type, and a number Nedges of other edge types which are constrained to lie in 

specific subregions within a square neighborhood of the location of the center edge. 

The sizes of the subregions are all the same and denoted by Np{xeis. Typically the 

subregions are wedge-shaped as indicated in Figure 2. Disjunction - allowing the 

Nedges edges to float in their respective subregions - is how geometric invariance (LI) 

is explicitly introduced at this level; there is also disjunction at the global level as 

indicated earlier. 

The frequency of occurrence of these groupings depends on Nedges, Npixeis and the 

particular spatial arrangement. Among the set of all possible edge groupings - the 

generic feature class - most are simultaneously rare in both object and background 

images. When specific groupings are selected according to their frequency in training 
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Figure 3: Examples of 9 x 9 subimages centered at instances of local features (edge group- 

ings) identified for faces. Left: Samples of one local feature from an image without faces. 

Right: The same thing for another local feature. 

examples of a particular object, they appear to be loosely correlated with evidence 

for contour segments, or even relationships among several segments. In Figure 3 

we show subimages of size 9x9 which contain two particular groupings common 

in faces. The one on the left is typically located at the region of the eyebrows; the 

grouping involves some horizontal edges of one polarity above some others of the 

opposite polarity. These instances were chosen randomly from among all instances in 

a complex scene with no faces. 

The point process determined by any local feature, as localized by the central edge, 

is a thinning of the point process determined by instances of the central edge type. 

Each additional edge type in the grouping, and corresponding subregion thins it even 

further. Figure 4 illustrates the thinning by showing all instances of horizontal edges 

of one polarity alongside all instances of a local feature centered at the horizontal 

edge with Nedges = 3 and Npixeis = 10. 

We present some statistics of local features in 70 images randomly downloaded 

from the web. The local features were chosen by varying the number of edges Nedges 

(from 2 — 7) and the size of the subregions Npixeis (from 7 — 40) and using different 

shapes for the subregions. For each local feature we calculated the density per pixel 

in each of the 70 images and took the average over images. The regression of the log 
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Figure 4: Left: All instances of horizontal edges. Right: All instances of a local feature 

dedicated to faces. 

density on Nedges and Npixeis yields an R2 > .95. The scatter plot of the log density 

versus the estimated linear regression is presented in Figure 5. Although at such 

relatively close distances, the individual edges are not independent, the dependence 

is sufficiently weak that if Np{xeis is held fixed there is a consistent multiplicative 

reduction in density of approximately e--6 = .5. In particular, property LIII (low 

background density) is clearly satisfied in the ranges of parameters presented here. 

Despite the high correlation, which is due to the averaging over images, there 

is substantial variation in the density from image to image. On the natural log- 

scale this variation is of order of ±1. In Table 1 we display the mean and standard 

deviation of the log-density for Npixeis = 10 pixels for various values of Nedges- The 

value Nedges — 0 corresponds to the density of each of the four edges. It is clear that 

the order-of-magnitude of the feature densities in generic images can be predicted 

based on the number of edges and the size of the regions. These general statistical 

properties are useful for constructing detection algorithms, for example in estimating 

false positive rates and computational demands. 

4.2    Higher-Order Moments 

We are also interested in higher-order moments of the point processes corresponding 

to the local features. These determine the statistics of the global arrangements. They 
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Figure 5: Scatter plot of log densities of local features vs. fitted regression to Nedges (the 

number of edges in a grouping) and Npixeu (the size of the subregions). 

are defined in the same manner as a local grouping, except with edges replaced by 

entire local groupings. The degree of geometric invariance is again determined by the 

degree of disjunction, which in turn depends on the (common) size of the subregions 

in which the local groupings are constrained to lie. 

We will concentrate on global arrangements of exactly three local features, referred 

to as "triangles." (This is the minimum number necessary to uniquely determine a 

basis.) Let us be more specific about what it means for a particular triangle - triple 

of local features - to be present "at pixel x". Denote the "central" local feature by a0 

and the two others by ct\ and Qf2- Of course ao, «i and a-i are each local groupings of 

edges. Let B\ and Bi be two boxes centered at the origin; these determine the degree 

of disjunction for at and o^- Also, let t>i and v2 be two vectors; these determine the 
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^ edges 0 1 2 3 4 5 6 

mean -3.8 -4.7 -5.2 -5.7 -6.3 -6.9 -7.5 

std .65 .83 .87 .97 .95 .93 .92 

Table 1: Mean and standard deviation of local feature log-density over 70 random images 

for various values of Ne(iges, with Npixeis = 10 

locations of the boxes relative the location of «o- Then there is an instance of the 

triangle at x if feature «o is present at x° = x, feature a\ is present at some point 

x1 € x° + V\ + B\ and feature a2 is present at some point x2 6 x° + v2 + B2- 

We used the 70 images to determine typical triangle densities in real images over 

a wide range of sizes for B\,B2 and offsets Vi,v2 (triangle shapes). We searched 

for all instances of each triangle in each image. For comparison, for each triangle 

and each image, we generated realizations of three mutually independent Poisson 

processes using the average densities of the local features in the image and searched 

for instances of these "ideal" triangles. In the lefthand panel of Figure 6 we show 

a typical scatter plot of the log densities of a global arrangement as a function of 

the log of the average density of the local features. Each point represents one of the 

seventy images, with o indicating actual local features and * indicating the Poisson 

simulation. It appears that the density of the global arrangements can be rather well 

predicted from the density of the local features. 

If the point processes defined by a0,ai,a2 were indeed Poisson and mutually 

independent, and if each local feature had the same density, say A;oca/, then the 

density of the corresponding triangle would be 

^global = Afoco/- \Bi\- \B2\, (1) 

assuming we ignore small clustering effects. Indeed this is the explanation for the 

particular slope, which is close to 3, observed in the Poisson log-log scatter plot in 

Figure 6. The overall shape of the scatter plot for the real features is similar, although 
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Figure 6: Left: Log-density of triples of local features versus log-density of individual local 

features, for both real local features (o) and Poisson data (*). Right: The log-likelihood 

curve for rj. 

there is naturally more variation. We replaced the exponent 3 in the expression for 

^global by a parameter rj and estimated rj by maximum likelihood based on the counts of 

the global arrangements. In the righthand panel of Figure 6 we show the log-likelihood 

curve for the seventy images; the maximum is nearly at rj = 3 with negligible variance. 

For Poisson data the maximum is also at rj = 3. 

We hasten to add that there are important exceptions to this seemingly straight- 

forward Poisson analogy. For example, if a0 and ai are both horizontal groupings 

of horizontal edges, and if V\ respects this orientation, then long range correlations 

become significant and affect the estimates given above. For example, with such local 

features, if V\ = (20,0) and v2 = (10, —20), we obtained rj = 2.2 and the number of 

detected triangles was extremely large. 
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5    Representing Objects 

How well do the global arrangements represent classes of objects? The training data 

are registered to a fixed size reference grid in such a way that linear variability is 

essentially factored out. Given parameters Neiges and Npixeis, we first identify a 

collection of local features a8-, i = 1,..., Ntypes, which are each "common" in a certain 

region of the object. This means it appears in a significant fraction of the training 

data within a fixed small neighborhood. Assume these neighborhoods are centered at 

points yi,i = 1..., A^ypes. We also insist that the neighborhoods be spread out over 

the entire object. In Amit et al. (1998) we describe a simple algorithm for finding 

such feature/neighborhood pairs which are common in registered training images and 

thereby verifying the "localization property" LII. This is the only training which takes 

place for visual selection. The computation time required for this training stage is on 

the order of minutes for several hundred training images. 

Each triple (i,j, k),l < i < j < k < Ntypes, of selected local features determines 

a "model" triangle (yi,yj,Vk)- The set of these triangles is the object representation. 

The triangles provide a straightforward mechanism for incorporating invariance into 

the search for candidate bases. Given an image and a model triangle A = {yi,yj,yk) 

for three local features cti,ctj,ctk, we search for all instances of these local features 

which form a triangle similar to the model triangle A up to small perturbations and 

a scaling of +/- 25%. The image-wide search for similar triangles is equivalent to a 

search for a global arrangement with vx = (yj — j/,), v2 = (yk — Vi), and the size of B\ 

and #2 on the order of a hundred pixels. We shall make this somewhat more precise 

in the following section. 

In Figure 7 we show 16 randomly deformed iTs, obtained from a prototype by 

applying a random low frequency non-linear deformation and then a random rotation 

and skew. We also show a smoothed version of the prototype with seven local features 

identified for this class of objects, and the first three deformed Z's with an instance 

of one of features. The images are not registered and the feature was detected on the 
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unregistered images. In a data set of 100 perturbed symbols all but one of these local 

features was found in over 35% of the symbols in the correct location. 

5.1    False Negative Probabilities 

In order to estimate false negative error rates we estimate the probability that a regis- 

tered object does not have any of the triangles (with the vertices in their distinguished 

neighborhoods). This is equivalent to having less than three of the local features at 

the specified locations. First, for each i — 1,..., Ntypes, we compute the fraction of 

registered training images which have local feature a, in a small neighborhood of j/;. 

Then, assuming independence of these features on registered data, and assuming the 

different fractions are approximately equal, we determine the false negative proba- 

bility by a simple calculation using the binomial distribution. We can then choose 

Ntypes, the number of local features, in order to acquire the "coverage property" GI 

mentioned in Section 3 and maintain an acceptable level of error. We note that these 

estimates only require a small amount of training data since only the frequencies of 

local features are compiled and a degree of invariance is built in. 

In Figure 8 we show frequencies of local features identified for faces in a training 

set of 300 faces as a function of Nedges and Npixe[s. (The ranges for Nedges and Npixeis 

are the same as before.) The frequencies show a strong linear relation to the number 

Nedges of edges and the size of the regions, Npixeis. The R2 after regression on these 

two variables was 93%. Similar numbers are observed for randomly deformed latex 

symbols. 

The data suggest a rather consistent relationship among Nedges,Npixeis and the 

frequencies of the most common local features. Frequencies on the order of 50% lead 

to very low false negative rates with only order Ntypes = 10 local features. Clearly 

the local variability of the object class is crucial in determining these frequencies. 

However, it is not unrealistic to assume that, after factoring out linear variability, 

there are a good number of local groupings which appear in approximately 50% of 
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Figure 7: Top: Sixteen randomly deformed 2's. Middle: Seven local features found on a 

prototype Z. The abbreviations "ht,hb,vr,vl" mean, respectively, horizontal edge brighter 

on top, horizontal edge brighter below, vertical edge brighter on the left, vertical edge 

brighter on the right. Bottom: Instances of the the top left local feature on 3 random 2's. 
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Figure 8:   Frequencies of common local features on 300 faces as a function of the fitted 

regression on Nedges and Npixeis 

the object images. 

In the special case in which the object class is created from smooth deformations 

of a single prototype, as in the LaTeX experiments presented here, the stability of the 

features is directly related to Npixeis, the degree of disjunction. This is demonstrated 

in Figure 7, in which local features identified on a single smoothed version of the 

prototype are then found on various deformations of that prototype at the correct 

location. 

5.2    False Positive Rates 

False positive rates are expressed by the density of the global arrangements in generic 

images. Given the local densities and the near-Poisson nature of the corresponding 

point processes, one can obtain reasonable upper bounds on the densities of the global 

arrangements in generic scenes (see Section 4). The important constraint is that the 

size of the regions #i,#2 used in the image-wide search for the global arrangements 

be sufficiently large to guarantee the following property: If the registered ROI of 

a basis has at least three local features oti,aj,ak somewhere in their distinguished 
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neighborhoods in the reference grid, then this ROI will in fact be "hit" in the sense 

of finding an instance of the corresponding global arrangement in the original image 

coordinates. As mentioned above this implies the size of the regions must be on the 

order of one hundred pixels. 

5.3 Choosing the Parameters 

In our experiments we used Nedges = 3 and Npixeis = 10. The density \iocai of the local 

features is then order 10~3, and it follows from equation 1 that the density \gi0bai of the 

global arrangements is order 10-5. In the experiments reported here and in Amit et 

al. (1998), we used NtyPes = 9 local features, which yields 84 model triangles. Hence, 

the density of detected candidate bases is order 84 x 10-5 ~ 10-3, or approximately 

several tens per 1002 pixels. Thus we see that, indeed, the conjunctions are very 

rare events in the background population, which is property Gil in Section 3. In 

addition, as explained in Section 5.1, false negative rates can also be predicted from 

the model parameters (Nedges, Npixeis, NtyPes)- Therefore, it is possible to choose these 

parameters in order to achieve specific constraints on false alarms, missed detections 

and computation time. Of course there are the usual tradeoffs. For example, if Nedges 

and Npixeis are held fixed, then increasing Ntype3 increases the number of false alarms 

but decreases the false negative rate, and similarly for Npixeis. 

5.4 Coarse-to-Fine Processing 

Visual selection - the search for the global arrangements - is highly coarse-to-fine. 

The reason is that organization of each step is tree-structured. For example, the 

edge fragments are defined as conjunctions of comparisons of intensity differences, 

organized as a vine; the search is terminated as soon as one comparison fails. Sim- 

ilarly, the point process determined by a local grouping is a thinning of the point 

process corresponding to the central edge; if the second edge is not found in the sub- 

region determined by the central one (see Figure 2), the search is abandoned, and 
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so forth. Finally, the global arrangements are strictly scarcer than the constituent 

local groupings and this search also has an underlying tree structure. This explains 

why the spatial distribution of processing illustrated in Figure 1 is so asymmetric. In 

contrast, if a neural network is trained to detect faces at a reference scale and then 

applied to every (or many) subregions of the image, the corresponding distribution 

would be more or less flat. 

6    Experiments 

The selection of candidate bases is determined by an image-wide search for the partic- 

ular global arrangements which represent the object class, as discussed above. Given 

a triple of local features a;, ay, ak at locations r/8-, y^yu on the reference grid, the steps 

are the following 

1. Precompute the locations of all local features in the image. 

2. Assume N instances of local feature a8- in the image: x^i,..., a;,-^. 

3. For n = 1,..., N, find all instances of ctj in Xi<n + B\, call these Xjt\,..., X^M 

(M may be 0). 

• For m = 1,..., M, define RXjirn^xiin to be the rotation determined by the 

vector xjiTn - xi>n. For each instance of ak at xk € z;,n + Rxjtm-xi,nB2, 

determine the affine map T taking yi,yj,yk into Xiin,Xjtm,Xk. 

• Add (Tzi,Tz2,Tz3) to the list of candidate bases. 

The requirements for the regions B\ and #2 were described in Section 5.2. In our 

applications it was sufficient to take B\ at most 11x11 (to accommodate the required 

range of scales) and B% at most 7x7. 

Final classification means assigning the label "object" or "background" to each 

candidate basis. This final disambiguation might be more computationally intensive 
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than selection; this was our experience with detecting faces. One reason is that final 

classification generally requires both geometric and grey level image normalization 

whereas visual selection does not, at least not in our scheme. In our experiments, 

geometric normalization means registering the ROI around the basis to the reference 

grid and greyscale normalization means standardizing the registered intensity data. 

Similar techniques have been used elsewhere. After normalization, one typically com- 

putes a fixed-length feature vector and classifies the candidates based on standard 

inductive methods (e.g., neural networks). The training set contains both "positive" 

examples from the object class and "negative" examples, which might be false posi- 

tives from the selection stage. In our case we use regions-of-interest which are flagged 

by the triangle search in the types of generic images mentioned earlier. 

We use classification trees for the final step. For detecting faces, we recursively 

partition registered and standardized data by comparing the normalized grey levels to 

thresholds. For detecting deformed LaTeX symbols, the splitting rules are based on 

the registered locations of the local features rather than on individual pixels. When a 

candidate basis is detected, the associated affine transformation maps the locations of 

the local features in the ROI of the candidate basis into the reference grid, yielding a 

binary feature vector with one component for each of the Ntypes types of local features 

and each pixel in the reference grid. 

In Figure 9 we show detection experiments including both visual selection and 

final classification, for the LaTeX symbols h and Z and for faces. The two symbol 

detectors are trained with 32 samples. The test images are 250x250 artificial scenes 

which contain 100 randomly chosen and randomly placed symbols in addition to the 

target one which is not occluded. The negative training examples were extracted 

from real scenes not the artificial scenes illustrated in Figure 9; consequently, the 

detection algorithm is independent of the particular statistics or other properties of 

these synthetic backgrounds. The lefthand panels of Figure 9 show all bases detected 

in the selection phase. Observe that a basis represents a precise hypothesis regarding 
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the pose of the object. Processing time is approximately 20 seconds on a 166Mhz 

laptop pentium and 3 seconds on a Sparc 20. 

For faces we trained on 300 pictures of 30 people (10 images per person) taken 

from the Olivetti database. The algorithm was tested on images from Rowley et 

al. (1998) (for example Figure 1), and images captured on the Sun Videocam (for 

example Figure 9). Processing time on a Sparc 20 is approximately .5 seconds per 

100 x 100 subimage. All computation times reported include six applications of the 

algorithm at different resolutions obtained by downsampling the original image by 

factors ranging from 1 (original resolution) to 1/4. About half of the processing time 

is spent in detecting the edges and the local groupings. Both operations are highly 

parallelizable. 

In hundreds of experiments using pictures obtained from a videocam, a Sony 

digital camera and Rowley's (Rowley et al. (1998)) database the false negative rate 

of the visual selection stage is close to zero. However, faces are lost during final 

classification. The main reason seems to be that all 300 faces in the Ollivetti training 

set have more or less uniform lighting. When faces appear with significantly different 

illumination, for example when the two halves of the face have very different mean 

intensities, the final classifier is likely to fail. Numerous results can be found at 

'http://galton.uchicago.edu/ amit/faces'. 

7    Biological Vision 

Our model was not conceived to explain how real brains function, although we have 

borrowed terms like "visual selection" and "foveation" from physiological and psy- 

chological studies in which these aspects of visual processing are well-established. In 

particular, there is evidence that object detection occurs in two phases - first search- 

ing for distinguished locations in a rather large field of view and then "focusing" the 

processing at these places.  In this section we investigate some compelling links be- 

24 



3/>    A     n \ 
re&tiifciW' 0 

tfö 

,,.**£ 
*#   §J 

Vgl JB»*.,    ty$q  i€A.y 

-K^ y. 

\r >- 4 I TT *^ J* 

tf 

f<W & 

^ ;% & \ * 

(1   Vn ~> t * 

Hs fe 

320x240 Direct 320x240 

Figure 9: Top Left: All bases flagged by the &-detector. Top Right: Final decision. Middle 

- same thing for a Z detector. Bottom - same thing for the face detector. 

25 



tween our computational model and work on biological vision. We also consider an 

implementation using the architecture of artificial neural networks. 

We have assumed that the only source of information for visual selection is grey 

level values from a single image; there is no color, motion or depth data. In other 

words, the procedure is entirely shape-based. It is obvious on empirical grounds that 

human beings analyze scenes without these additional cues. In addition, there are 

experiments in neuropsychology (e.g., Bulthoff k, Edelman (1992)) which indicate 

that 3D information is not crucial. 

Our selection model has three clearly distinct levels of computation: 

• Level I - edge fragments; 

• Level II - local groupings of fragments; 

• Level III - global arrangements of local groupings. 

Level I roughly corresponds to the basic type of processing believed to be performed in 

certain layers of VI (Hubel (1988)). Level II involves more complex operations which 

might relate to processing occurring in V2; and Level III could relate to functions of 

neurons in IT. These connections are elaborated in the next two subsections. 

7.1    Flexible Groupings and Illusory Contours 

How regular are the grey level patterns which activate cells in the brain? There is 

evidence of cells in various areas which respond to rather general stimulii. For exam- 

ple, in VI there are responses to edge-like patterns which are orientation-dependent 

but contrast- independent (Schiller, Finlay & Volman (1976)). And in von der Heydt 

(1995) there is a review of the neurophysiological evidence for V2 cells responsive 

to "illusory" or "anomalous" contours; even in VI according to Grosof, Shapley & 

Hawken (1993). These cells respond equally well to an oriented line and to an occluded 

or interrupted line. They also respond to gradings which form the preferred orien- 

tation. Finally, cells in IT also respond to loose patterns and even to configurations 
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which are difficult to name (Fujita, Tanaka, Ito h Cheng (1992)). One interpreta- 

tion of these experiments is that these cells respond to a flexible local configuration 

of edges constrained by loose geometrical relationships. Activation does not require 

a complete, continuous contour at a certain orientation; sufficient evidence for the 

presence of such a contour is enough. 

This approach seems to be more robust and efficient than a finely-tuned search. 

Consider image contours arising from object boundaries and discontinuities in depth, 

lighting or shape. Such contours are often partially occluded or degraded by noise 

and therefore continuous contours may not be sufficiently stable for visual selection. 

Moreover, given that one observes a several nearby edge fragments of a certain ori- 

entation, it appears wasteful to attempt to "fill in" missing fragments and form a 

more complete entity. Since objects and "clutter" are locally indistinguishable, the 

additional information gain might be small compared, say, to inspecting another re- 

gion. More specifically, detecting three approximately colinear horizontal edges in 

close proximity might be a rather unlikely event at a random image location, and 

hence might sharply increase the likelihood of some non-accidental structure, such 

as an object of interest. However, conditioned on the presence of these three edge 

fragments, and on the presence of either an object or clutter, the remaining fragments 

needed to complete the contour might be very likely to be detected (or very unlikely 

due to occlusion) and hence of little use in discrimination. The fact that the visual 

system at the very low levels of LGN responds to contrast and not to homogeneous 

regions of lighting is another manifestation of the same phenomenon. Finally, the 

computation of these flexible groupings is local and it is not difficult to imagine a 

simple feed-forward architecture for detecting them from edge fragment data. 

7.2    Global Arrangements and Invariance 

There is clear evidence for translation and scale invariance within certain ranges in 

the responses of some neurons in IT, (Lueschow et al. (1994), Ito, Tamura, Fujita & 
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Tanaka (1995)). Most of these neurons do not select highly specific shapes. This is 

demonstrated in the experiments in Kobatake &; Tanaka (1994) and in Ito et al. (1995) 

where successive simplifications of the selective stimuli, and various deformations or 

degradations, still evoke a strong response. Moreover the time between the local 

processing in VI and the responses in IT, which involve integrating information in a 

rather large field of view and at a large range of scales, is a few tens of milliseconds. 

Suppose a neuron in IT responds to stimulii similar to the types of global arrange- 

ments discussed here, and anywhere in the receptive field and over a range of scales. 

Then the speed of the calculation is at least partially explained by the simplicity of 

the structure it is detecting, which is not really an object but rather a more general 

structure, perhaps dedicated to many shapes simultaneously. However, conditioned 

on the presence of this structure, the likelihood of finding an object of interest in its 

immediate vicinity is considerably higher than at a random location. 

Put another way, the neurons in IT seem to have already overcome the problem 

of "moding out" scale, translation and other types of deformations and degradations. 

This would appear to be very difficult based on complex object representations. It 

is more efficient to use sparse representations for which it is easy to define those 

disjunctions needed for invariance. Scale and deformation invariance are achieved by 

taking disjunctions over the angles and distances between the local features; occlusion 

and degradation invariance are achieved by taking a disjunction over several spatial 

arrangements (the different triangles). 

7.3    Segmentation 

There is no segmentation in the sense of a processing stage which precedes recognition 

and extracts a rough approximation of the bounding contours of the object. The clas- 

sical "bottom-up" model of visual processing assumes that edge information leads to 

the segmentation of objects. This is partly motivated by the widespread assumption 

that local processing carried out in VI involves the detection, and possibly organi- 
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zation, of oriented edge segments (Hubel & Wiesel (1977), Hubel (1988)). However, 

edge detectors do not directly determine smooth, connected curves which delineate 

well-defined regions and it is now clear to many researchers in both computer and bi- 

ological vision that purely edge-based segmentation is not feasible in most real scenes 

(von der Heydt (1995), Ullman (1996)), at least not without a tentative interpretation 

of the visual input. 

7.4    Architecture 

Our actual implementation of the visual selection algorithm is of course entirely serial. 

However, suppose we consider the type of multi-layer arrays of processors which 

are common in neural models and suppose a large degree of connectivity. Then 

what sort of architecture might be efficient for the detection of the types of global 

arrangements we have described? In particular, how would one achieve invariance to 

scale, translation and other transformations with a reasonable number of units and 

connections? 

The required complexity seems considerable, particularly if we consider detecting 

many types of objects. Even for a single object class, a large number of arrange- 

ments might be needed to "cover" the class and accommodate a wide range of poses. 

Consider just "triangle" arrangements. Of course only a small fraction of all possible 

triangles of all possible local groupings provides information about an object class, 

i.e., has markedly different statistics in the object and background populations. Still, 

due to natural in-class variation and object positioning, there must be considerable 

flexibility in the shape of a triangle corresponding to a useful global arrangement. 

One significant reduction in the degree of connectivity required to detect all the 

arrangements at all allowable variations can be achieved by "spreading the informa- 

tion" collected by the local feature detectors. Consider an auxiliary array of units 

arranged the same as the array of features detectors and with local connections be- 

tween the two arrays.  Suppose that when a unit in the detector array is activated 
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(by detecting a local feature) so does every unit in some neighborhood in the aux- 

iliary array. If these neighborhoods are sufficiently large then for each instance of 

a global arrangement of three features a, ß,j found in the original detector arrays 

(as described in Section 6), there will be an instance of the exact model triangle, 

with the instance of the first feature coming from the detector array for a, and the 

other two from the auxiliary arrays for ß and 7. The original search for all "similar" 

triangles can be replaced by a search for the single "model" triangle. This search 

will flag essentially the same arrangements as the original search in terms of the first 

local feature a in the triple. However, the other two are always in exactly the same 

relative location and hence information regarding scale or rotation is lost. 

The number of connections needed for this coarser search is only on the order of 

thousands. The "master" unit dedicated to the arrangement needs to be connected 

to each unit u in the local detector array for say feature a and, for each such u, to 

exactly two other units in the auxiliary arrays for features /?,7, namely those which 

correspond to the other two vertices of the model triangle when it is translated to 

u. Moreover, the lost information about scale, rotation, etc. can be retrieved. The 

information about the true locations of the local features is preserved in the original 

detector arrays. Suppose xa,Xß, x-y are the three vertices of a detected model triangle 

in the auxiliary arrays. Then there must be an instance of local feature ß in the 

detector array in the neighborhood of the unit situated at Xß, and similarly for 7. 

Since xa is fixed, the search to recover the true triangle is local. The final output of 

visual selection - namely the set of candidate bases - is the same as before. 

The detection of the local features themselves could be achieved by the same 

mechanism (spreading information). The only pose parameter in this case is the 

location of the edge fragment at the center of the local grouping. Some complex 

neurons in VI are a simple example of such information spreading, where the original 

local features are highly localized oriented edges detected by the simple neurons in 

VI. The question is whether this phenomenon occurs at higher levels as well, with 
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more complex local features, and whether this is indeed the means by which the brain 

achieves scale invariance. 

7.5    Multiple Object Classes 

Remarkably, real brains manage to parse full scenes and perform rapid visual selection 

when no specific detection task is specified, i.e., no prior information is provided about 

objects of interest. Clearly at least thousands of possible object classes are then 

simultaneously considered. Perhaps context plays a significant role; see Biederman 

(1981) and Palmer (1975). 

More modestly, how might a computer algorithm be designed to conduct an effi- 

cient search for say tens or hundreds of object classes? Ideally, this would be done in 

some coarse-to-fine manner, in which many object classes are simultaneously inves- 

tigated, leading eventually to finely-tuned distinctions. Clearly, efficient indexing is 

crucial (Lowe (1985)). 

Although we have concentrated here on a single object class, it is evident that the 

representations obtained during training could be informative about many objects. 

Some evidence for this was discussed in Amit h Geman (1997) in the context of 

"shape quantization"; decision trees induced from training data about one object 

class were found to be useful for classifying shapes never seen during training. 

We are currently trying to represent multiple object classes by arrangements of 

local groupings in much the same manner as discussed in this paper for a single object 

class. The world of spatial relationships is exceptionally rich and our previous expe- 

rience with symbol detection is promising. We expect the number of arrangements 

needed to identify multiple classes, or separate them from each other, will grow log- 

arithmically with the number of classes. The natural progression is to first separate 

all objects of interest from "background" and then begin to separate object classes 

from one another, eventually arriving at very precise hypotheses. The organization 

of the computation is motivated by the "twenty questions paradigm"; the processing 
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is tree-structured and computational efficiency is measured by mean path length. 

8    Conclusion 

The main strengths of the proposed model are stability, computational efficiency, and 

the relatively small amount of training data. For example, in regard to face detection, 

we have tested the algorithm under many imaging conditions, including "on-line" 

experiments involving a digital camera in which viewing angles and illumination vary 

considerably. It is likely that the algorithm could be accelerated to nearly real- 

time. One source of these properties is the use of crude, image-based features rather 

than refined, model- based features; any "sub-classification" problems are eliminated. 

Another source is the explicit treatment of photometric and geometric invariance. 

And finally there is the surprising uniformity of the "statistics" of these features in 

both object and background populations, which can be learned from a modest number 

of examples, and which determine error rates and total computation. 

The main limitations involve accuracy and generality. First, there is a non- 

negligible false negative rate (e.g., five percent for faces) if the number of regions 

selected for final classification is of order 10-100. This is clearly well below human 

performance, although comparable to other detection algorithms. Second, we have 

not dealt with general poses or 3D aspects; whereas scale and location are arbitrary, 

we have by no means considered all possible viewing angles, nor the effects of occul- 

sion. Finally, our model is dedicated to a specific object class and does not account for 

general scene parsing. How is visual selection guided when no specific detection task is 

required and a great many objects of interest, perhaps thousands, are simultaneously 

spotted? 
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